
February 2014 DocID022648 Rev 1 1/36

AN4031
Application note

Using the STM32F2 and STM32F4 DMA controller

Introduction

This application note describes how to use the STM32F2xx and STM32F4xx direct memory
access (DMA) controller. The STM32F2xx/F4xx DMA controller features, the system
architecture, the multi-layer bus matrix and the memory system contribute to provide a high
data bandwidth and to develop very low latency response-time software.

This application note also describes some tips and tricks to allow developers to take full
advantage of these features and ensure correct response times for different peripherals and
subsystems.

STM32F2xx and STM32F4xx are referred to as “STM32F2/F4 devices” and the DMA
controller as “DMA” throughout the document.

This application note applies to the products listed in Table 1.

This application note should be read in conjunction with the STM32F2/F4 reference
manuals (RM0031, RM0090 and RM0368).

Table 1. Applicable products

Type Part numbers

Microcontrollers
STM32F2xx (STM32F205, STM32F207, STM32F215, STM32F217)

STM32F4xx (STM32F401, STM32F405, STM32F407, STM32F415,
STM32F417, STM32F427, STM32F429, STM32F437, STM32F439)

www.st.com

http://www.st.com

Contents AN4031

2/36 DocID022648 Rev 1

Contents

1 DMA controller description . 6

1.1 DMA transfer properties . 6

1.1.1 DMA streams/channels . 7

1.1.2 Stream priority . 10

1.1.3 Source and destination addresses . 10

1.1.4 Transfer mode . 10

1.1.5 Transfer size . 11

1.1.6 Incrementing source/destination address . 11

1.1.7 Source and destination data width . 11

1.1.8 Transfer types . 11

1.1.9 DMA FIFO mode . 11

1.1.10 Source and destination burst size . 13

1.1.11 Double-buffer mode . 14

1.1.12 Flow control . 15

1.2 Setting up a DMA transfer . 15

2 System performance considerations . 17

2.1 Multi-layer bus matrix . 18

2.1.1 Definitions . 18

2.1.2 Round-robin priority scheme . 19

2.1.3 BusMatrix arbitration and DMA transfer delays worst case 20

2.2 DMA transfer paths . 21

2.2.1 Dual DMA port . 21

2.2.2 DMA transfer states . 23

2.2.3 DMA request arbitration . 24

2.3 AHB-to-APB bridge . 25

2.3.1 Dual AHB-to-APB port . 25

2.3.2 AHB-to-APB bridge arbitration . 25

3 How to predict DMA latencies . 27

3.1 DMA transfer time . 27

3.1.1 Default DMA transfer timing . 27

3.1.2 DMA transfer time versus concurrent access . 28

3.2 Examples . 29

DocID022648 Rev 1 3/36

AN4031 Contents

3

3.2.1 ADC-to-SRAM DMA transfer . 29

3.2.2 SPI full duplex DMA transfer . 30

4 Tips and warnings while programming the DMA controller 32

5 Conclusion . 34

6 Revision history . 35

List of tables AN4031

4/36 DocID022648 Rev 1

List of tables

Table 1. Applicable products . 1
Table 2. DMA1 request mapping . 8
Table 3. DMA2 request mapping . 9
Table 4. DMA1 request mapping for STM32F401 . 9
Table 5. DMA2 request mapping for STM32F401 . 10
Table 6. Possible burst configurations . 14
Table 7. Peripheral port access/transfer time versus DMA path used . 28
Table 8. Memory port access/transfer time . 28
Table 9. DMA peripheral (ADC) port transfer latency . 29
Table 10. DMA memory (SRAM) port transfer latency . 29
Table 11. Document revision history . 35

DocID022648 Rev 1 5/36

AN4031 List of figures

5

List of figures

Figure 1. DMA block diagram . 7
Figure 2. Channel selection . 8
Figure 3. DMA source address and destination address incrementing . 11
Figure 4. FIFO structure. 12
Figure 5. DMA burst transfer . 13
Figure 6. Double-buffer mode . 14
Figure 7. System architecture . 18
Figure 8. CPU and DMA1 request an access to SRAM1. 19
Figure 9. Five masters request SRAM access. 20
Figure 10. DMA transfer delay due to CPU transfer issued by interrupt . 21
Figure 11. DMA dual port . 22
Figure 12. Peripheral-to-memory transfer states . 23
Figure 13. Memory-to-peripheral transfer states . 24
Figure 14. DMA request arbitration . 24
Figure 15. AHB-to-APB1 bridge concurrent CPU and DMA1 access request 26
Figure 16. SPI full duplex DMA transfer time. 30

DMA controller description AN4031

6/36 DocID022648 Rev 1

1 DMA controller description

The DMA is an AMBA advanced high-performance bus (AHB) module that features three
AHB ports: a slave port for DMA programming and two master ports (peripheral and
memory ports) that allow the DMA to initiate data transfers between different slave modules.

The DMA allows data transfers to take place in the background, without the intervention of
the Cortex-Mx processor. During this operation, the main processor can execute other tasks
and it is only interrupted when a whole data block is available for processing.

Large amounts of data can be transferred with no major impact on the system performance.
The DMA is mainly used to implement central data buffer storage (usually in the system
SRAM) for different peripheral modules. This solution is less expensive in terms of silicon
and power consumption compared to a distributed solution where each peripheral needs to
implement it own local data storage.

The STM32F2/F4 DMA controller takes full advantage of the Cortex-Mx Harvard
architecture and the multi-layer bus system in order to ensure very low latency both for DMA
transfers and for CPU execution/interrupt event detection/service.

1.1 DMA transfer properties

A DMA transfer is characterized by the following properties:

• DMA stream/channel

• Stream priority

• Source and destination addresses

• Transfer mode

• Transfer size (only when DMA is the flow controller)

• Source/destination address incrementing or non-incrementing

• Source and destination data width

• Transfer type

• FIFO mode

• Source/destination burst size

• Double-buffer mode

• Flow control

STM32F2/F4 devices embed two DMA controllers, and each DMA has two port, one
peripheral port and one memory port, which can work simultaneously.

Figure 1 shows the DMA block diagram.

DocID022648 Rev 1 7/36

AN4031 DMA controller description

35

Figure 1. DMA block diagram

The following subsections provide a detailed description of each DMA transfer property.

1.1.1 DMA streams/channels

STM32F2/F4 devices embed two DMA controllers, offering up to 16 streams in total (eight
per controller), each dedicated to managing memory access requests from one or more
peripherals.

Each stream has up to eight selectable channels (requests) in total. This selection is
software-configurable and allows several peripherals to initiate DMA requests.

Figure 2 describes the channel selection for a dedicated stream.

A
H

B
 m

as
te

r

Memory port

F
IF

O

A
H

B
 m

as
te

r

Peripheral port
S

T
R

E
A

M
 0

F
IF

O

S
T

R
E

A
M

 1

S
T

R
E

A
M

 0

S
T

R
E

A
M

 1

F
IF

O

S
T

R
E

A
M

 2
S

T
R

E
A

M
 2

F
IF

O

S
T

R
E

A
M

 7
S

T
R

E
A

M
 7

REQ_STREAM0

REQ_STR0_CH0
REQ_STR0_CH1

DMA controller

F
IF

O

S
T

R
E

A
M

 3
S

T
R

E
A

M
 3

F
IF

O

S
T

R
E

A
M

 4
S

T
R

E
A

M
 4

F
IF

O

S
T

R
E

A
M

 5
S

T
R

E
A

M
 5

F
IF

O

S
T

R
E

A
M

 6
S

T
R

E
A

M
 6

Arbiter

REQ_STREAM1
REQ_STREAM2
REQ_STREAM3
REQ_STREAM4
REQ_STREAM5
REQ_STREAM6
REQ_STREAM7

REQ_STR0_CH7

REQ_STR1_CH0
REQ_STR1_CH1

REQ_STR1_CH7

REQ_STR7_CH0
REQ_STR7_CH1

REQ_STR7_CH7

AHB slave
programming

interface
Programming port

Channel
selection

ai15945

DMA controller description AN4031

8/36 DocID022648 Rev 1

Figure 2. Channel selection

Note: Only one channel/request can be active at the same time in a stream.

More than one enabled DMA stream must not serve the same peripheral request.

Table 2 and Table 3 show the possible configurations of DMA streams/channels versus
peripheral requests for all the supported products except STM32F401, which is described in
Table 4 and Table 5.

REQ_STREAMx

REQ_STRx_CH7

REQ_STRx_CH6

REQ_STRx_CH5

REQ_STRx_CH4

REQ_STRx_CH3

REQ_STRx_CH2

REQ_STRx_CH1

REQ_STRx_CH0

CHSEL[2:0]

31 29 27 0

DMA_SxCR
ai15947

Table 2. DMA1 request mapping

Peripheral
requests

Stream 0 Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Stream 7

Channel 0 SPI3_RX - SPI3_RX SPI2_RX SPI2_TX SPI3_TX - SPI3_TX

Channel 1 I2C1_RX - TIM7_UP TIM7_UP I2C1_RX I2C1_TX I2C1_TX

Channel 2 TIM4_CH1 -
I2S3_EXT_

RX
TIM4_CH2

I2S2_EXT_
TX

I2S3_EXT_
TX

TIM4_UP TIM4_CH3

Channel 3 I2S3_EXT_
RX

TIM2_UP
TIM2_CH3

I2C3_RX
I2S2_EXT_

RX
I2C3_TX TIM2_CH1

TIM2_CH2
TIM2_CH4

TIM2_UP
TIM2_CH4

Channel 4 UART5_RX USART3_RX UART4_RX USART3_TX UART4_TX USART2_RX USART2_TX UART5_TX

Channel 5 UART8_TX(1) UART7_TX(1) TIM3_CH4
TIM3_UP

UART7_RX(1) TIM3_CH1
TIM3_TRIG

TIM3_CH2 UART8_RX(1) TIM3_CH3

Channel 6 TIM5_CH3
TIM5_UP

TIM5_CH4
TIM5_TRIG

TIM5_CH1
TIM5_CH4
TIM5_TRIG

TIM5_CH2 - TIM5_UP -

Channel 7 - TIM6_UP I2C2_RX I2C2_RX USART3_TX DAC1 DAC2 I2C2_TX

1. These requests are available on STM32F42xx and STM32F43xx only.

DocID022648 Rev 1 9/36

AN4031 DMA controller description

35

Table 4 andTable 5 show the possible configurations of DMA streams/channels versus
peripheral requests for STM32F401 products.

Table 3. DMA2 request mapping

Peripheral
requests

Stream 0 Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Stream 7

Channel 0 ADC1 SAI1_A(1)
TIM8_CH1
TIM8_CH2
TIM8_CH3

SAI1_A(1) ADC1 SAI1_B(1)
TIM1_CH1
TIM1_CH2
TIM1_CH3

-

Channel 1 - DCMI ADC2 ADC2 SAI1_B(1) SPI6_TX(1) SPI6_RX(1) DCMI

Channel 2 ADC3 ADC3 - SPI5_RX(1) SPI5_TX(1) CRYP_OUT CRYP_IN HASH_IN

Channel 3 SPI1_RX - SPI1_RX SPI1_TX - SPI1_TX - -

Channel 4 SPI4_RX(1) SPI4_TX(1) USART1_RX SDIO - USART1_RX SDIO USART1_TX

Channel 5 - USART6_RX USART6_RX SPI4_RX(1) SPI4_TX(1) - USART6_TX USART6_TX

Channel 6 TIM1_TRIG TIM1_CH1 TIM1_CH2 TIM1_CH1
TIM1_CH4
TIM1_TRIG
TIM1_COM

TIM1_UP TIM1_CH3 -

Channel 7 - TIM8_UP TIM8_CH1 TIM8_CH2 TIM8_CH3 SPI5_RX(1) SPI5_TX(1)
TIM8_CH4
TIM8_TRIG
TIM8_COM

1. These requests are available on STM32F42xx and STM32F43xx only.

Table 4. DMA1 request mapping for STM32F401

Peripheral
requests

Stream 0 Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Stream 7

Channel 0 SPI3_RX - SPI3_RX SPI2_RX SPI2_TX SPI3_TX - SPI3_TX

Channel 1 I2C1_RX I2C3_RX - - - I2C1_RX I2C1_TX I2C1_TX

Channel 2 TIM4_CH1 - I2S3_EXT_R
X

TIM4_CH2 I2S2_EXT_TX I2S3_EXT_TX TIM4_UP TIM4_CH3

Channel 3 I2S3_EXT_RX
TIM2_UP

TIM2_CH3
I2C3_RX

I2S2_EXT_R
X

I2C3_TX TIM2_CH1
TIM2_CH2
TIM2_CH4

TIM2_UP
TIM2_CH4

Channel 4 - - - - - USART2_RX USART2_TX -

Channel 5 - -
TIM3_CH4
TIM3_UP

-
TIM3_CH1
TIM3_TRIG

TIM3_CH2 - TIM3_CH3

Channel 6 TIM5_CH3
TIM5_UP

TIM5_CH4
TIM5_TRIG

TIM5_CH1
TIM5_CH4
TIM5_TRIG

TIM5_CH2 I2C3_TX TIM5_UP -

Channel 7 - - I2C2_RX I2C2_RX - - - I2C2_TX

DMA controller description AN4031

10/36 DocID022648 Rev 1

STM32F2/F4 DMA request mapping is designed in such a way that the software application
has more flexibility to map each DMA request for the associated peripheral request, and that
most of the use case applications are covered by multiplexing the corresponding DMA
streams and channels.

1.1.2 Stream priority

Each DMA port has an arbiter for handling the priority between other DMA streams. Stream
priority is software-configurable (there are four software levels). If two or more DMA streams
have the same software priority level, the hardware priority is used (stream 0 has priority
over stream 1, etc.).

1.1.3 Source and destination addresses

A DMA transfer is defined by a source address and a destination address. Both the source
and destination should be in the AHB or APB memory ranges and should be aligned to
transfer size.

1.1.4 Transfer mode

DMA is capable of performing three different transfer modes:

• Peripheral to memory,

• Memory to peripheral,

• Memory to memory (only DMA2 is able to do such transfer, in this mode, the circular
and direct modes are not allowed.)

Table 5. DMA2 request mapping for STM32F401

Peripheral
requests

Stream 0 Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Stream 7

Channel 0 ADC1 - - - ADC1 -
TIM1_CH1
TIM1_CH2
TIM1_CH3

-

Channel 1 - - - - - - - -

Channel 2 - - - - - - - -

Channel 3 SPI1_RX - SPI1_RX SPI1_TX - SPI1_TX - -

Channel 4 SPI4_RX SPI4_TX USART1_RX SDIO - USART1_RX SDIO USART1_TX

Channel 5 - USART6_RX USART6_RX SPI4_RX SPI4_TX - USART6_TX USART6_TX

Channel 6 TIM1_TRIG TIM1_CH1 TIM1_CH2 TIM1_CH1
TIM1_CH4
TIM1_TRIG
TIM1_COM

TIM1_UP TIM1_CH3 -

Channel 7 - - - - - - - -

DocID022648 Rev 1 11/36

AN4031 DMA controller description

35

1.1.5 Transfer size

The transfer size value has to be defined only when the DMA is the flow controller. In fact,
this value defines the volume of data to be transferred from source to destination.

The transfer size is defined by the DMA_SxNDTR register value and by the peripheral side
data width. Depending on the received request (burst or single), the transfer size value is
decreased by the amount of the transferred data.

1.1.6 Incrementing source/destination address

It is possible to configure the DMA to automatically increment the source and/or destination
address after each data transfer.

Figure 3. DMA source address and destination address incrementing

1.1.7 Source and destination data width

Data width for source and destination can be defined as:

● Byte (8 bits)

● Half-word (16 bits)

● Word (32 bits)

1.1.8 Transfer types

• Circular mode: the Circular mode is available to handle circular buffers and continuous
data flows (the DMA_SxNDTR register is then reloaded automatically with the
previously programmed value).

• Normal mode: once the DMA_SxNDTR register reaches zero, the stream is disabled
(the EN bit in the DMA_SxCR register is then equal to 0).

1.1.9 DMA FIFO mode

Each stream has an independent 4-word (4 * 32 bits) FIFO and the threshold level is
software-configurable between 1/4, 1/2, 3/4 or full. The FIFO is used to temporarily store
data coming from the source before transmitting them to the destination.

DMA FIFO can be enabled or disabled by software; when disabled, the Direct mode is used.
If DMA FIFO is enabled, data packing/unpacking and/or Burst mode can be used. The
configured DMA FIFO threshold defines the DMA memory port request time.

DMA controller description AN4031

12/36 DocID022648 Rev 1

The DMA FIFOs implemented on STM32F2/F4 devices help to:

• reduce SRAM access and so give more time for the other masters to access the bus
matrix without additional concurrency,

• allow software to do burst transactions which optimize the transfer bandwidth,

• allow packing/unpacking data to adapt source and destination data width with no extra
DMA access.

Figure 4. FIFO structure

Source: byte

4 words

byte lane 0

byte lane 1

byte lane 2

byte lane 3

1/4 1/2 3/4 FullEmpty

B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B 11

B12

B13

B14

B15

Destination: word

Source: byte Destination: half-word

4 words

byte lane 0

byte lane 1

byte lane 2

byte lane 3

1/4 1/2 3/4 FullEmpty

B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B 11

B12

B13

B14

B15

W0W1W2W3

H0

H1

H2

H3

H4

H5

H6

H7

Source: half-word Destination: word

4 words

byte lane 0

byte lane 1

byte lane 2

byte lane 3

1/4 1/2 3/4 FullEmpty

H0

W0W1W2W3

H1

H2

H3

H4

H5

H6

H7

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

H7 H6 H5 H4 H3 H2 H1 H0

H7, H6, H5, H4, H3, H2, H1, H0

W3, W2, W1, W0

W3, W2, W1, W0

Source: half-word

4-words

byte lane 0

byte lane 1

byte lane 2

byte lane 3

1/4 1/2 3/4 FullEmpty

Destination: byte

H7 H6 H5 H4 H3 H2 H1 H0

B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B 11

B12

B13

B14

B15

H0

H1

H2

H3

H4

H5

H6

H7
B15 B14 B13 B12 B11 B10 B9 B8

B7 B6 B5 B4 B3 B2 B1 B0

ai15951

DocID022648 Rev 1 13/36

AN4031 DMA controller description

35

1.1.10 Source and destination burst size

Burst transfers are guaranteed by the implemented DMA FIFOs.

Figure 5. DMA burst transfer

In response to a burst request from peripheral DMA reads/writes the number of data units
(data unit can be a word, a half-word, or a byte) programmed by the burst size (4x, 8x or 16x
data unit). The burst size on the DMA peripheral port must be set according to the peripheral
needs/capabilities.

The DMA burst size on the memory port and the FIFO threshold configuration must match.
This allows the DMA stream to have enough data in the FIFO when burst transfer on the
memory port is started. Table 6 shows the possible combinations of memory burst size,
FIFO threshold configuration and data size.

To ensure data coherence, each group of transfers that form a burst is indivisible: AHB
transfers are locked and the arbiter of the AHB bus matrix does not remove the DMA
master’s access rights during the burst transfer sequence.

DMA controller description AN4031

14/36 DocID022648 Rev 1

1.1.11 Double-buffer mode

A double-buffer stream works as a regular (single-buffer) stream, with the difference that it
has two memory pointers. When the Double-buffer mode is enabled, the Circular mode is
automatically enabled and at each end of transaction (DMA_SxNDTR register reach 0), the
memory pointers are swapped.

This allows the software to process one memory area while the second memory area is
being filled/used by the DMA transfer.

Figure 6. Double-buffer mode

Table 6. Possible burst configurations

MSIZE FIFO level MBURST = INCR4 MBURST = INCR8 MBURST = INCR16

Byte

1/4 1 burst of 4 bytes forbidden

forbidden1/2 2 bursts of 4 bytes 1 burst of 8 bytes

3/4 3 bursts of 4 bytes forbidden

Full 4 bursts of 4 bytes 2 bursts of 8 bytes 1 burst of 16 bytes

Half-word

1/4 forbidden

forbidden

forbidden

1/2 1 burst of 4 half-words

3/4 forbidden

Full 2 bursts of 4 half-words 1 burst of 8 Half-word

Word

1/4

forbidden
forbidden

1/2

3/4

Full 1 burst of 4 words

DocID022648 Rev 1 15/36

AN4031 DMA controller description

35

In Double-buffer mode, it is possible to update the base address for the AHB memory port
on-the-fly (DMA_SxM0AR or DMA_SxM1AR) when the stream is enabled:

• When the CT (Current Target) bit in the DMA_SxCR register is equal to 0, the current
DMA memory target is memory location 0 and so the base address memory location 1
(DMA_SxM1AR) can be updated.

• When the CT bit in the DMA_SxCR register is equal to 1, the current DMA memory
target is memory location 1 and so the base address memory location 0
(DMA_SxM0AR) can be updated.

1.1.12 Flow control

The flow controller is the unit that controls the data transfer length and which is responsible
for stopping the DMA transfer.

The flow controller can be either the DMA or the peripheral.

• With DMA as flow controller:

In this case, it is necessary to define the transfer size value in the DMA_SxNDTR register
before enabling the associated DMA stream. When a DMA request is served, the transfer
size value decreases by the amount of transferred data (depending of the type of request:
burst or single).

When the transfer size value reaches 0, the DMA transfer is finished and the DMA stream is
disabled.

• With the peripheral as flow controller:

This is the case when the number of data items to be transferred is unknown. The peripheral
indicates by hardware to the DMA controller when the last data are being transferred. Only
the SD/MMC peripheral supports this mode.

1.2 Setting up a DMA transfer

To configure DMA stream x (where x is the stream number), the following procedure should
be applied:

1. If the stream is enabled, disable it by resetting the EN bit in the DMA_SxCR register,
then read this bit in order to confirm that there is no ongoing stream operation. Writing
this bit to 0 is not immediately effective since it is actually written to 0 once all the
current transfers have finished. When the EN bit is read as 0, this means that the
stream is ready to be configured. It is therefore necessary to wait for the EN bit to be
cleared before starting any stream configuration. All the stream-dedicated bits set in

DMA controller description AN4031

16/36 DocID022648 Rev 1

the status register (DMA_LISR and DMA_HISR) from the previous data block DMA
transfer should be cleared before the stream can be re-enabled.

2. Set the peripheral port register address in the DMA_SxPAR register. The data will be
moved from/to this address to/from the peripheral port after the peripheral event.

3. Set the memory address in the DMA_SxMA0R register (and in the DMA_SxMA1R
register in the case of a Double-buffer mode). The data will be written to or read from
this memory after the peripheral event.

4. Configure the total number of data items to be transferred in the DMA_SxNDTR
register. After each peripheral event or each beat of the burst, this value is
decremented.

5. Select the DMA channel (request) using CHSEL[2:0] in the DMA_SxCR register.

6. If the peripheral is intended to be the flow controller and if it supports this feature, set
the PFCTRL bit in the DMA_SxCR register.

7. Configure the stream priority using the PL[1:0] bits in the DMA_SxCR register.

8. Configure the FIFO usage (enable or disable, threshold in transmission and reception).

9. Configure the data transfer direction, peripheral and memory incremented/fixed mode,
single or burst transactions, peripheral and memory data widths, Circular mode,
Double-buffer mode and interrupts after half and/or full transfer, and/or errors in the
DMA_SxCR register.

10. Activate the stream by setting the EN bit in the DMA_SxCR register.

As soon as the stream is enabled, it can serve any DMA request from the peripheral
connected to the stream.

DocID022648 Rev 1 17/36

AN4031 System performance considerations

35

2 System performance considerations

STM32F2/F4 devices embed a multi-masters/multi-slaves architecture:

• Eight masters:

– Cortex™-Mx core I-bus

– Cortex™-Mx core D-bus

– Cortex™-Mx core S-bus

– DMA1 memory bus

– DMA2 memory bus

– DMA2 peripheral bus

– Ethernet DMA bus

– USB high-speed DMA bus

• Eight slaves:

– Internal Flash memory ICode bus

– Internal Flash memory DCode bus

– Main internal SRAM1 (112 KB, 64 KB on STM32F401x)

– Auxiliary internal SRAM2 (16 KB) (not available on STM32F401)

– Auxiliary internal SRAM3 (64 KB) available only on STM32F42x/F43x devices

– AHB1 peripherals including AHB-to-APB bridges and APB peripherals

– AHB2 peripherals

– AHB3 peripheral (FMC) (not available on STM32F401)

Masters and slaves are connected via a multi-layer bus matrix ensuring concurrent access
and efficient operation, even when several high-speed peripherals work simultaneously.
This architecture is shown in the next figure for the case of STM32F40x/F41x.

System performance considerations AN4031

18/36 DocID022648 Rev 1

Figure 7. System architecture

2.1 Multi-layer bus matrix

The multi-layer bus matrix allows masters to perform data transfers concurrently as long as
they are addressing different slave modules. On top of the Cortex-Mx Harvard architecture
and dual AHB port DMAs, this structure enhances data transfer parallelism, thus
contributing to reduce the execution time, and optimizing the DMA efficiency and power
consumption.

2.1.1 Definitions

• AHB master: a bus master is able to initiate read and write operations. Only one master
can win bus ownership at a defined time period.

• AHB slave: a bus slave response to master read or write operations. The bus slave
signals back to master success, failure or waiting states.

• AHB arbiter: a bus arbiter insures that only one master can initiate a read or write
operation at one time.

• AHB bus matrix: a multi-layer AHB bus matrix that interconnects AHB masters to AHB
slaves with dedicated AHB arbiter for each layer. The arbitration uses a round-robin
algorithm.

DocID022648 Rev 1 19/36

AN4031 System performance considerations

35

2.1.2 Round-robin priority scheme

A round-robin priority scheme is implemented at bus matrix level in order to ensure that
each master can access any slave with very low latency:

• Round-robin arbitration policy allows a fair distribution of bus bandwidth.

• Maximum latency is bounded.

• Round-robin quantum is 1x transfer.

Bus matrix arbiters intervene to solve access conflicts when several AHB masters try to
access the same AHB slave simultaneously.

In the following example (Figure 8), both the CPU and DMA1 try to access SRAM1 to read
data.

Figure 8. CPU and DMA1 request an access to SRAM1

In case of bus access concurrency as in the above example, a bus matrix arbitration is
required. The round-robin policy is then applied in order to solve the issue: if the last master
which wan the bus was the CPU, during the next access DMA1 wins the bus and accesses
SRAM1 first. The CPU has then the rights to access SRAM1.

This proves that the transfer latency associated to one master depends on the number of
other pending master requests to access the same AHB slave. In the following example
(Figure 9), five masters try to access simultaneously SRAM1.

System performance considerations AN4031

20/36 DocID022648 Rev 1

Figure 9. Five masters request SRAM access

The latency associated to DMA1 to win the bus matrix again and access SRAM1 (for
example) is equal to the execution time of all pending requests coming from the other
masters.

2.1.3 BusMatrix arbitration and DMA transfer delays worst case

The latency seen by the DMA master port on one transaction depends on the other masters’
transfer types and lengths.

For instance, if we consider previous DMA1 & CPU example (Figure 8) with concurrency to
access SRAM, latency on the DMA transfer varies depending on the CPU transaction
length.

If bus access is first granted to the CPU and the CPU is not performing a single data
load/store, the DMA wait time to gain access to SRAM can expand from one AHB cycle for
a single data load/store to N AHB cycles, where N is the number of data words in the CPU
transaction.

The CPU locks the AHB bus to keep ownership and reduces latency during multiple
load/store operations and interrupts entry. This enhances firmware responsiveness but it
can result in delays on the DMA transaction.

Delay on DMA1 SRAM access when in concurrency with CPU depends on the type of
transfer:

• CPU transfer issued by interrupt (context save): 8 AHB cycles

• CPU transfer issued by LDM/STM instructions: 14 AHB cycles(a)

– Transfers of up to 14 registers from/to memory

a. Latency due to transfer issued by LDM/STM instructions can be reduced by configuring compiler to split
load/store multiple instructions into single load/store instructions.

DocID022648 Rev 1 21/36

AN4031 System performance considerations

35

Figure 10. DMA transfer delay due to CPU transfer issued by interrupt

The above figure details the case of a DMA transfer delayed by a CPU multi-cycle transfer
due to an interrupt entry. DMA memory port is triggered to perform a memory access. After
arbitration, AHB bus is not granted to DMA1 memory port but to CPU System Bus. An
additional delay is observed to serve the DMA request. It is 8 AHB cycles for a CPU transfer
issued by interrupt.

The same behavior can be observed with other masters (like DMA2, USB_HS, Ethernet…)
when addressing simultaneously the same slave with a transaction length different from one
data unit.

In order to improve DMA access performance over BusMatrix, it is recommended to avoid
bus contention.

2.2 DMA transfer paths

2.2.1 Dual DMA port

STM32F2/F4 devices embed two DMAs. Each DMA has two ports, a memory port and a
peripheral port, which can operate simultaneously not only at DMA level but also with other
system masters, using the external bus matrix and dedicated DMA paths.

The simultaneous operation allows to optimize DMA efficiency and to reduce response time
(wait time between request and data transfer).

System performance considerations AN4031

22/36 DocID022648 Rev 1

Figure 11. DMA dual port

For DMA2:

• The MEM (memory port) can access AHB1, AHB2, SRAM1, SRAM2, FSMC and Flash
memory D-code through the bus matrix.

• The Periph (peripheral port) can access:

– AHB1, AHB2, SRAM1, SRAM2, FSMC and Flash memory D-code through the bus
matrix,

– the AHB-to-APB2 bridge through a direct path (not crossing the bus matrix).

For DMA1:

• The MEM (memory port) can access SRAM1, SRAM2, FSMC, Flash memory D-code
through the bus matrix.

• The Periph (peripheral port) can only access the AHB-to-APB1 bridge through a direct
path (not crossing the bus matrix).

DocID022648 Rev 1 23/36

AN4031 System performance considerations

35

2.2.2 DMA transfer states

This section explains the DMA transfer steps at the peripheral port level and also at the
memory port level:

• For a peripheral-to-memory transfer:

In this transfer mode, DMA requires two bus accesses to perform the transfer:

– One access over the peripheral port triggered by the peripheral’s request,

– One access over the memory port which can be triggered either by the FIFO
threshold (when FIFO mode is used) or immediately after peripheral read (when
Direct mode is used).

Figure 12. Peripheral-to-memory transfer states

• For a memory-to-peripheral transfer:

In this transfer mode, DMA requires two bus accesses to perform the transfer:

– DMA anticipates the peripheral’s access and reads data from the memory and
stores it in FIFO to ensure an immediate data transfer as soon as a DMA
peripheral request is triggered.

– When a peripheral request is triggered, a transfer is generated on the DMA
peripheral port.

System performance considerations AN4031

24/36 DocID022648 Rev 1

Figure 13. Memory-to-peripheral transfer states

2.2.3 DMA request arbitration

As described in Section 1.1.2, the STM32F2/F4 DMA embeds an arbiter that manages the
eight DMA stream requests based on their priorities for each of the two AHB master ports
(memory and peripheral ports) and launches the peripheral/memory access sequences.

When more than one DMA request is active, DMA needs to arbiter internally between the
active requests and decide which request is to be served first.

The following figure shows two circular DMA requests triggered at the same time by DMA
stream “request 1” and by DMA stream “request 2” (requests 1 and 2 could be any DMA
peripheral request). At the next AHB clock cycle, the DMA arbiter checks on the active
pending requests and grants access to the “request 1” stream which has the highest priority.

The next arbitration cycle occurs during the last data cycle of the “request 1” stream. At that
time, “request 1” is masked and the arbiter sees only “request 2” as active, so access is
reserved to “request 2” this time, and so on.

Figure 14. DMA request arbitration

DocID022648 Rev 1 25/36

AN4031 System performance considerations

35

General recommendations:

• The high-speed/high-bandwidth peripherals must have the highest DMA priorities. This
ensures that the maximum data latency is respected for these peripherals and over-
/under-run conditions are avoided.

• In case of equal bandwidth requirements, it is recommended to assign a higher priority
to the peripherals working in Slave mode (which have no control on the data transfer
speed) compared with the ones working in Master mode (which may control the data
flow).

• As the two DMAs can work in parallel based on the bus matrix multi-layer structure,
high-speed peripherals’ requests can be balanced between the two DMAs when
possible.

2.3 AHB-to-APB bridge

STM32F2/F4 devices embed two AHB-to-APB bridges, APB1 and APB2, to which the
peripherals are connected.

2.3.1 Dual AHB-to-APB port

The STM32F2/F4 AHB-to-APB bridge is a dual-port architecture that allows access through
two different paths:

• A direct path (not crossing the bus matrix) that can be generated from DMA1 to APB1
or from DMA2 to APB2; in this case, access is not penalized by the bus matrix arbiter.

• A common path (through the bus matrix) that can be generated either from the CPU or
from DMA2, which needs the bus matrix arbitration to win the bus.

2.3.2 AHB-to-APB bridge arbitration

Due to DMA’s direct paths implementation on these products, an arbiter is implemented at
the AHB-to-APB bridge level to solve concurrent access requests.

The following figure illustrates a concurrent access request at an AHB-APB1 bridge
generated by the CPU (accessed through the bus matrix) and DMA1 (accessed through
direct path).

System performance considerations AN4031

26/36 DocID022648 Rev 1

Figure 15. AHB-to-APB1 bridge concurrent CPU and DMA1 access request

To grant bus access, the AHB-APB bridge applies the round-robin policy:

• Round-robin quantum is 1x APB transfer.

• Max latency on DMA peripheral port is bounded (1 APB transfer).

Only the CPU and DMAs can generate a concurrent access to the APB1 and APB2 buses:

• For APB1, a concurrent access can be generated if the CPU, DMA1 and/or DMA2
request simultaneous access.

• For APB2, a concurrent access can be generated if the CPU and DMA2 request
simultaneous access.

DocID022648 Rev 1 27/36

AN4031 How to predict DMA latencies

35

3 How to predict DMA latencies

When designing a firmware application based on a microcontroller, the user must ensure
that no underrun/overrun can occur, and that’s why knowing the exact DMA latency for each
transfer is mandatory to check if the internal system can sustain the total data bandwidth
required for the application.

3.1 DMA transfer time

3.1.1 Default DMA transfer timing

As described in Section 2.2.2, to perform a DMA transfer from peripheral to memory, two
bus accesses are required:

• One access over peripheral port triggered by peripheral request, which needs:

– DMA peripheral port request arbitration

– Peripheral address computation

– Reading data from the peripheral to DMA FIFO (DMA source)

• One access over memory port which can be triggered by the FIFO threshold (when
FIFO mode is used) or immediately after peripheral read (when Direct mode is used),
which needs:

– DMA memory port request arbitration

– Memory address computation

– Writing loaded data in SRAM (DMA destination)

When transferring data from memory to peripheral, two accesses are also required as
described in Section 2.2.2:

• First access: DMA anticipates peripheral access and reads data from memory and
stores it in FIFO to ensure an immediate data transfer as soon as DMA peripheral
request is triggered. This operation needs:

– DMA memory port request arbitration

– Memory address computation

– Reading data from memory to DMA FIFO (DMA source)

• Second access: when peripheral request is triggered, a transfer is generated on DMA
peripheral port. This operation needs:

– DMA peripheral port request arbitration

– Peripheral address computation

– Writing loaded data at peripheral address (DMA destination)

As a general rule, the total transfer time by DMA stream TS is equal to:

TS = TSP (peripheral access/transfer time) + TSM (memory access/transfer time)

With:

TSP is the total timing for DMA peripheral port access and transfer which is equal to:
TSP = tPA+ tPAC + tBMA + tEDT + tBS

How to predict DMA latencies AN4031

28/36 DocID022648 Rev 1

Where:

• TSM is the total timing for DMA memory port access and transfer which is equal to:
TSM = tMA+ tMAC + tBMA + tSRAM

Where:

3.1.2 DMA transfer time versus concurrent access

Additional latency can be added to the DMA service timing described in Section 3.1.1 when
several masters try to access simultaneously to the same slave.

For peripheral and memory worst-case access/transfer time, the following factors impact the
total delay time for DMA stream service:

• When several masters are accessing the same AHB destination simultaneously, the
DMA latency is impacted; the DMA transfer cannot start until the bus matrix arbiter
grants access to the DMA as described in Section 2.1.2.

• When several masters (DMA and CPU) are accessing the same AHB-to-APB bridge,
the DMA transfer time is delayed due to the AHB-to-APB bridge arbitration as
described in Section 2.3.2.

Table 7. Peripheral port access/transfer time versus DMA path used

Description

Through bus matrix
DMA’s

direct pathsTo AHB
peripherals

To APB
peripherals

tPA: DMA peripheral port arbitration 1 AHB cycle 1 AHB cycle 1 AHB cycle

tPAC: peripheral address computation 1 AHB cycle 1 AHB cycle 1 AHB cycle

tBMA: bus matrix arbitration (when no
concurrency)(1)

1. In the case of STM32F401, tBMA is equal to zero.

1 AHB cycle 1 AHB cycle N/A

tEDT: effective data transfer 1 AHB cycle(2) (3)

2. For FMC, an additional cycle can be added depending on the external memory used. Additional AHB
cycles are added depending on external memory timings.

3. In case of burst, the effective data transfer time depends on the burst length (INC4 tEDT= 4 AHB cycles).

2 APB cycles 2 APB cycle

tBS: bus synchronization N/A 1 AHB cycle 1 AHB cycle

Table 8. Memory port access/transfer time

Description Latency

tMA: DMA memory port arbitration 1 AHB cycle

tMAC: memory address computation 1 AHB cycle

tBMA: bus matrix arbitration (when no concurrency)(1)

1. In the case of STM32F401, tBMA is equal to zero.

1 AHB cycle(2)

2. For consecutive SRAM accesses (while no other master accesses the same SRAM in-between),
tBMA = 0 cycle.

tSRAM: SRAM read or write access 1 AHB cycle

DocID022648 Rev 1 29/36

AN4031 How to predict DMA latencies

35

3.2 Examples

3.2.1 ADC-to-SRAM DMA transfer

This example is applicable to products STM32F2xx, STM32F405, STM32F407,
STM32F415, STM32F417, STM32F42x and STM32F43x.

The ADC is configured in continuous triple Interleaved mode. In this mode, it converts
continuously one analog input channel at the maximum ADC speed (36 MHz). The ADC
prescaler is set to 2, the sampling time is set to 1.5 cycles, and the delay between two
consecutive ADC samples of the Interleaved mode is set to 5 cycles.

The DMA2 stream0 transfers the ADC converted value to an SRAM buffer. DMA2 access to
ADC is done through direct path; however, DMA access to SRAM is done through the bus
matrix.

In this example, the total DMA latency from the ADC DMA trigger (ADC EOC) to write the ADC value
on SRAM is equal to 9 AHB cycles for AHB/APB prescaler equals 1 and 11 AHB cycles for AHB/APB
prescaler equals 2.

Note: When using FIFO, the DMA memory port access is launched when reaching the FIFO level
configured by the user.

Table 9. DMA peripheral (ADC) port transfer latency

AHB/APB2 frequency FAHB = 72 MHz/
FAPB2 = 72 MHz

AHB/APB ratio = 1

FAHB = 144 MHz/
FAPB2 = 72 MHz

AHB/APB ratio = 2Transfer time

tPA: DMA peripheral port arbitration 1 AHB cycle 1 AHB cycle

tPAC: peripheral address computation 1 AHB cycle 1 AHB cycle

tBMA: bus matrix arbitration N/A(1)

1. DMA2 accesses ADC through direct path: no bus matrix arbitration.

N/A(1)

tEDT: effective data transfer 2 AHB cycles 4 AHB cycles

tBS: bus synchronization 1 AHB cycle 1 AHB cycle

TSP: total DMA transfer time for peripheral port 5 AHB cycles 7 AHB cycles

Table 10. DMA memory (SRAM) port transfer latency

CPU/APB2 frequency FAHB = 72MHz/
FAPB2=72MHz

AHB/APB ratio = 1

FAHB = 144MHz/
FAPB2=72MHz

AHB/APB ratio = 2Transfer time

tMA: DMA memory port arbitration 1 AHB cycle 1 AHB cycle

tMAC: memory address computation 1 AHB cycle 1 AHB cycle

tBMA: bus matrix arbitration 1 AHB cycle(1)

1. In case of DMA multiple access to SRAM, the bus matrix arbitration is equal to 0 cycle if no other master
accessed to the SRAM in-between.

1 AHB cycle(1)

tSRAM: SRAM write access 1 AHB cycle 1 AHB cycle

TSM: total DMA transfer time for memory port 4 AHB cycles 4 AHB cycles

How to predict DMA latencies AN4031

30/36 DocID022648 Rev 1

3.2.2 SPI full duplex DMA transfer

This example is applicable to products STM32F2xx, STM32F405, STM32F407,
STM32F415, STM32F417, STM32F42x and STM32F43x, and is based on the SPI1
peripheral.

Two DMA requests are configured:

• DMA2_Stream2 for SPI1_RX: this stream is configured to be the highest priority in
order to serve in time the SPI1 received data, and transfer it from the SPI1_DR register
to the SRAM buffer.

• DMA2_Stream3 for SPI1_TX: this stream transfers data from the SRAM buffer to the
SPI1_DR register.

The AHB frequency is equal to the APB2 frequency (84 MHz) and SPI1 is configured to
operate at the maximum speed (42 MHz). DMA2_Stream2 (SPI1_RX) is triggered before
DMA2_Stream3 (SPI1_TX), which is triggered two AHB cycles later.

With this configuration, the CPU is polling infinitely on the I2C1_DR register. Knowing that
the I2C1 peripheral is mapped on APB1 and that the SPI1 peripheral is mapped on APB2,
the system paths are the following:

• Direct path for DMA2 to access APB2 (not through bus matrix),

• CPU accesses APB1 through bus matrix.

The aim is to demonstrate that the DMA timings are not impacted by the CPU polling on
APB1. The following figure summarizes the DMA timing for Transmit and Receive modes,
as well as the time scheduling for each operation:

Figure 16. SPI full duplex DMA transfer time

DocID022648 Rev 1 31/36

AN4031 How to predict DMA latencies

35

This figure illustrates the following conclusions:

• CPU polling on APB1 is not impacting the DMA transfer latency on APB2.

• For the DMA2_Stream2 (SPI1_RX) transaction, at the eighth AHB clock cycle, there is
no bus matrix arbitration since it is supposed that the last master that accessed the
SRAM is DMA2 (so no re-arbitration is needed).

• For the DMA2_Stream3 (SPI1_TX) transaction, this stream anticipates the read from
SRAM and writes it on the FIFO and then, once triggered, the DMA peripheral port
(destination is SPI1) starts operation.

• For DMA2_Stream3, the DMA peripheral arbitration phase (1 AHB cycle) is executed
during the DMA2_Stream2 bus synchronization cycle.
This optimization is always executed like this when the DMA request is triggered before
the end of a current DMA request transaction.

Tips and warnings while programming the DMA controller AN4031

32/36 DocID022648 Rev 1

4 Tips and warnings while programming the DMA
controller

1. Software sequence to disable DMA

To switch off a peripheral connected to a DMA stream request, it is mandatory to:

• switch off the DMA stream to which the peripheral is connected,

• wait until the EN bit in DMA_SxCR register is reset (“0”).

Only then can the peripheral be safely disabled.

Note: In both cases, a Transfer Complete Interrupt Flag (TCIF in DMA_LISR or DMA_HISR) is set
to indicate the end of transfer due to the stream disable.

2. DMA flag management before enabling a new transfer

Before enabling a new transfer, the user must ensure that the Transfer Complete Interrupt
Flag (TCIF) in DMA_LISR or DMA_HISR is cleared.

As a general recommendation, it is advised to clear all flags in the DMA_LIFCR and
DMA_HIFCR registers before starting a new transfer.

3. Software sequence to enable DMA

The following software sequence applies when enabling DMA:

• Configure the suitable DMA stream.

• Enable the DMA stream used (set the EN bit in the DMA_SxCR register).

• Enable the peripheral used.

Note: If the user enables the used peripheral before the corresponding DMA stream, a “FEIF”
(FIFO Error Interrupt Flag) may be set due to the fact the DMA is not ready to provide the
first required data to the peripheral (in case of memory-to-peripheral transfer).

4. Memory-to-memory transfer while NDTR=0

When configuring a DMA stream to perform a memory-to-memory transfer in normal mode,
once NDTR reaches 0, the Transfer Complete is set. At that time, if the user sets the enable
bit (EN bit in DMA_SxCR) of this stream, the memory-to-memory transfer is automatically
re-triggered again with the last NDTR value.

5. DMA peripheral burst with PINC/MINC=0

DMA Burst feature with peripheral address increment (PINC) or memory address increment
(MINC) disable allows to address internal or external (FSMC) peripherals supporting Burst
(embedding FIFOs). This mode ensures that this DMA stream cannot be interrupted by
other DMA streams during its transactions.

DocID022648 Rev 1 33/36

AN4031 Tips and warnings while programming the DMA controller

35

6. Twice-mapped DMA requests

When the user configures two (or more) DMA streams to serve the same peripheral request,
software should ensure that the current DMA stream is completely disabled (by polling the
EN bit in the DMA_SxCR register) before enabling a new DMA stream.

7. Best DMA throughput configuration

When using STM32F4xx with reduced AHB frequency while DMA is servicing a high-speed
peripheral, it is recommended to put the stack and heap in the CCM (which can be
addressed directly by the CPU through D-bus) instead of putting them on the SRAM, which
would create an additional concurrency between CPU and DMA accessing the SRAM
memory.

8. DMA transfer suspension

At any time, a DMA transfer can be suspended to be restarted later on or to be definitively
disabled before the end of the DMA transfer.

There are two cases:

• The stream disables the transfer with no later-on restart from the point where it was
stopped: there is no particular action to do, except to clear the EN bit in the DMA_SxCR
register to disable the stream and to wait until the EN bit is reset. As a consequence:

– The DMA_SxNDTR register contains the number of remaining data items at the
moment when the stream was stopped so that the software can determine how
many data items have been transferred before the stream was interrupted.

• The stream suspends the transfer in order to resume it later by re-enabling the stream:
to restart from the point where the transfer was stopped, the software has to read the
DMA_SxNDTR register after disabling the stream (EN bit at “0”) to know the number of
data items already collected. Then:

– The peripheral and/or memory addresses have to be updated in order to adjust
the address pointers.

– The SxNDTR register has to be updated with the remaining number of data items
to be transferred (the value read when the stream was disabled).

– The stream may then be re-enabled to restart the transfer from the point where it
was stopped.

Note: In both cases, a Transfer Complete Interrupt Flag (TCIF in DMA_LISR or DMA_HISR) is set
to indicate the end of transfer due to the stream interruption.

Conclusion AN4031

34/36 DocID022648 Rev 1

5 Conclusion

The STM32F2/F4 DMA controller is designed to cover most of the embedded use case
applications by:

• Giving flexibility to firmware to choose the suitable combination between 16 streams X
16 channels (eight for each DMA),

• Reducing the total latency time for a DMA transfer, thanks to dual AHB port
architecture, and direct path to APB bridges avoiding CPU stall on AHB1 access when
DMA is servicing low-speed APB peripherals,

• FIFOs implementation on DMA allows more flexibility to firmware to configure different
data sizes between source and destination, and speeds-up transfers when using
incremental burst transfer mode.

DocID022648 Rev 1 35/36

AN4031 Revision history

35

6 Revision history

Table 11. Document revision history

Date Revision Changes

04-Feb-2014 1 Initial release.

AN4031

36/36 DocID022648 Rev 1

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

